
Research Article

http: // www.ijesrt.com (C) International Journal of Engineering Sciences & Research Technology

IJESRT
INTERNATIONAL JOURNA

Use Of Software Metrics To Measure And Improve The Quality Of The Software

Deepak Agrawal1, Anurag Punde

The software development process plays an important role in the field of Information & Telecommunication (
The project managers are emphasis to improve the quality of the software process. To provide the good quality
product the developers are prominence on new improved approaches. Many researchers have proposed many
approaches, but, the most promising ap
also demand for the software measurement and also enhance the quality of services (QoS). Such metrics are needed
or useful when the organization is adopting the new technology with
of this study is to have qualitative analysis by elevating design complexity of the software. In this paper, we
investigate the problems in software development which includes
efficiency, test-ability, reuse-ability, security and encapsulation. The metrics and the subset of metrics
prevalent in practice. The anticipated outcomes acquired are
orienting and aligning their design with small scale industry software development practices.
Index Terms— Software metrics, coupling, inheritance metrics, reusability, efficiency, complexity.

Introduction
There are lots of changes happening in today’s
technology. The OO approach has significance
advantages over the traditional approach and
structured programming approach. The
characteristics of OO approach include data hiding,
message passing, data abstraction, encapsulation etc.
which differs with the other programming standards.
The industries are now adopting OO approach very
frequently. The rapid changes in the technology
always require some methods that analyse the
product developed by those technologies. The quality
of any product will depend upon certain parameters
such as encapsulation, data hiding, maintainability,
efficiency, complexity, testability, usability etc. The
programming standards and the efficient approach
can develope the effective product. Effective
software design requires designer to have experience
and deep knowledge of object-oriented approach.
Only a prudent use of OO mechanisms can result in
reusable and maintainable software. To measure the
software attributes of such technology, the use of
software metrics which than measure it before the
development of the product is required.

 [Agrawal, 1(3
 ISSN: 2277

International Journal of Engineering Sciences & Research Technology

INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH
TECHNOLOGY

Use Of Software Metrics To Measure And Improve The Quality Of The Software
Design

, Anurag Punde2, Priyanka Pandey3, Sonal Dubey4, Mrinalika Ghosh
agrawal.deepak22@gmail.com

Abstract
The software development process plays an important role in the field of Information & Telecommunication (
The project managers are emphasis to improve the quality of the software process. To provide the good quality
product the developers are prominence on new improved approaches. Many researchers have proposed many
approaches, but, the most promising approach is object orientation. With the development of the improved software
also demand for the software measurement and also enhance the quality of services (QoS). Such metrics are needed
or useful when the organization is adopting the new technology with the new programming standards. The purpose
of this study is to have qualitative analysis by elevating design complexity of the software. In this paper, we
investigate the problems in software development which includes understand-ability, maintainability,

ability, security and encapsulation. The metrics and the subset of metrics
prevalent in practice. The anticipated outcomes acquired are beneficial to be used by software designers for

their design with small scale industry software development practices.
Software metrics, coupling, inheritance metrics, reusability, efficiency, complexity.

There are lots of changes happening in today’s
technology. The OO approach has significance
advantages over the traditional approach and
structured programming approach. The
characteristics of OO approach include data hiding,

data abstraction, encapsulation etc.
which differs with the other programming standards.
The industries are now adopting OO approach very
frequently. The rapid changes in the technology
always require some methods that analyse the

e technologies. The quality
of any product will depend upon certain parameters
such as encapsulation, data hiding, maintainability,
efficiency, complexity, testability, usability etc. The
programming standards and the efficient approach

fective product. Effective
software design requires designer to have experience

oriented approach.
Only a prudent use of OO mechanisms can result in
reusable and maintainable software. To measure the

technology, the use of
software metrics which than measure it before the
development of the product is required.Software

metric is a quantitative as well as qualitative
measurement. The software metric measures the
efficiency of software quality attributes. The
objective of having software metric is obtaining
numerous valuable applications by measuring
efficiency, testability, complexity, reusability,
security and understandability. Software metrics can
be categorized into product metrics
metrics. Product metrics assess tracking risks or the
security and discovering potential problem areas or
efficiency, understandability or testability. Process
metrics works on maintainability of the process of the
team or organization. Now the software developers or
the software managers need to identify the group of
different metrics which measures the same aspect of
software. The chosen of the software metrics are very
necessary which provide some useful information,
otherwise managers are unable to measure quality
products and the purpose of metrics can be lost.
Many researchers have suggested many metrics, but,
in this paper we are taking only few metrics as a base
which evaluates the software quality by
software quality attributes. In the following table we
have shown the metrics with their description.

3): May, 2012]

ISSN: 2277-9655

International Journal of Engineering Sciences & Research Technology[115-125]

ENCES & RESEARCH

Use Of Software Metrics To Measure And Improve The Quality Of The Software

, Mrinalika Ghosh5, Vijit Jain 6

The software development process plays an important role in the field of Information & Telecommunication (ICT).
The project managers are emphasis to improve the quality of the software process. To provide the good quality
product the developers are prominence on new improved approaches. Many researchers have proposed many

proach is object orientation. With the development of the improved software
also demand for the software measurement and also enhance the quality of services (QoS). Such metrics are needed

the new programming standards. The purpose
of this study is to have qualitative analysis by elevating design complexity of the software. In this paper, we

maintainability, complexity,
ability, security and encapsulation. The metrics and the subset of metrics chosen are

to be used by software designers for

Software metrics, coupling, inheritance metrics, reusability, efficiency, complexity.

is a quantitative as well as qualitative
measurement. The software metric measures the
efficiency of software quality attributes. The
objective of having software metric is obtaining
numerous valuable applications by measuring

lexity, reusability,
Software metrics can

product metrics and process
. Product metrics assess tracking risks or the

security and discovering potential problem areas or
y or testability. Process

metrics works on maintainability of the process of the
team or organization. Now the software developers or
the software managers need to identify the group of
different metrics which measures the same aspect of

en of the software metrics are very
necessary which provide some useful information,
otherwise managers are unable to measure quality
products and the purpose of metrics can be lost.
Many researchers have suggested many metrics, but,

aking only few metrics as a base
which evaluates the software quality by analyzing
software quality attributes. In the following table we
have shown the metrics with their description.

Research Article [Agrawal, 1(3): May, 2012]
 ISSN: 2277-9655

http: // www.ijesrt.com (C) International Journal of Engineering Sciences & Research Technology[115-125]

S. No Name of Metrics Attributes Description Source
1 Attribute

Inheritance factor
Inheritance A system level metrics,

defined as the ratio of the
sum of inherited attributes
in all classes of the
system under
consideration to the total
number of available
attributes (locally defined
plus inherited) for all
classes.

CK

2 Method
Inheritance Factor

Inheritance System level metrics,
defined as the ratio of the
sum of the inherited
methods in all classes of
the system under
consideration to the total
number of available
methods (locally defined
plus inherited) for all
classes.

MOOD

3 Number of
Children

Inheritance The measure of number
of subclasses which will

inherit the methods of
the parent class. High
value of NOC indicates
more testing and improper
abstraction which results
in misuse of data.

CK

4 Depth of
Inheritance

Inheritance Measure of the ancestor
classes that can
potentially affect this
class. Deeper a particular
class in the hierarchy,
greater the potential reuse
of inherited methods and
greater is the design
complexity.

CK

5 Attribute Hiding
Factor

Information Hiding Measure of
encapsulation. It is ratio
of sum of invisibilities of
all attributes defined in all
classes to the total
number of attributes
defined in the system
under consideration.

MOOD

Research Article [Agrawal, 1(3): May, 2012]
 ISSN: 2277-9655

http: // www.ijesrt.com (C) International Journal of Engineering Sciences & Research Technology[115-125]

6 Method Hiding
Factor

Information Hiding Measure of
encapsulation. It is the
ratio of sum of
invisibilities of all
methods defined in all
classes to total number of
methods defined in
system under
consideration.

Note: inherited
methods not considered.

MOOD

7 Coupling Factor

Coupling Defined as ratio of
maximum possible
number of couplings in
the system to actual
number of couplings not
attributable to inheritance.

MOOD

8 Coupling
Between The

Object

Coupling Two classes are
coupled when methods
declared in one class use
methods or instance
variables defined by the
other classes. To improve
modularity and promote
encapsulation, inter-
object class couples
should be kept minimum.

CK

9 Weighted Method
per class

Class Measures the
complexity, predicts how
much time and effort is
required to develop and
maintain the class .Higher
value of WMC leads to a
bigger value of
complexity and decreases
quality.

CK

The flow of this paper as follows: Section 2 contains
the literature survey of different researchers, section
3 contains the analysis of the small industries project
with their result section 4 contains the conclusion &
future enhancement and section 5 contains the
references.

SURVEY
Chidambaram and Kemmerer (CK) in 1991,
proposed first version metrics known as [Chida91]
metrics and in [Chida94], presented the definitions

after some improvements. The metrics were defined
to measure design complexity with their impact on
external quality attributes such as maintainability,
reusability, etc. CK’94 applied the metrics on real
world projects and found that designers can keep
inheritance hierarchy superficial by neglecting
reusability which results in ease of understanding.
The metrics also helped in detecting design flaws and
gives testing resources.
Briand et al.’s metrics was proposed in 1997 as
[Brian97]. The measurement of coupling between

Research Article [Agrawal, 1(3): May, 2012]
 ISSN: 2277-9655

http: // www.ijesrt.com (C) International Journal of Engineering Sciences & Research Technology[115-125]

classes was the objective of this metrics. The metrics
was when applied on real systems studies concluded
that, if one intends to build quality models of OO
designs, coupling was very likely be an important
structural dimension to consider, which tend to be
associated with fault-proneness.
MOOD metrics was originally proposed as
[Bistro94] then was improved in [Bistro96a], and
then was extended to MOOD2 metrics in 1998.The
metrics defined were used for OO design mechanism
which includes inheritance(MIF and AIF) ,
information hiding (MHF and AHF) and
polymorphism(PF) metrics which result in
consequent relation between software quality and
development productivity.
Bansiya et al.’s metrics had its first version in 1999
and then after some up-gradations in 2002. The
metrics were defined to assess design properties like
encapsulation, coupling, cohesion, composition and
inheritance .The software tool QMOOD++, allows
the design assessment to be carried automatically by
giving the parameters of interest for particular
evaluation. The tool uses C++ as the target language.

Analysis of Small Industries Project
A.1 Method
A method is an operation upon an object and is
defined in the class declaration.
• Metric 1: Weighted Methods per Class (WMC)
The WMC is a count of the methods implemented
within a class or the sum of the complexities of the
methods (method complexity is measured by
Cyclomatic complexity). The second measurement is
difficult to implement since not all methods are
accessible within the class hierarchy due to
inheritance. The number of methods and the
complexity of the methods involved is a predictor of
how much time and effort is required to develop and
maintain the class. The larger the number of methods
in a class, the greater the potential impact on children
since children inherit all of the methods defined in a
class. Classes with large numbers of methods are
likely to be more application specific, limiting the
possibility of reuse. This metric measures
Understandability, Maintainability, and Reusability.

Figure-1: Class Diagram of BANK

To calculate the complexity of a class, the specific
complexity metric that is chosen (e.g., cyclomatic
complexity) should be normalized so that nominal
complexity for a method takes on value 1.0. Consider
a class K1, with methods M1… Mn that are defined
in the class. Let C1 ….Cn be the complexity of the
methods [Chidamber94].
 n
 WMC = ΣCi
 i=1

If all method complexities are considered to be unity,
then WMC = n, the number of methods in the class.
In Figure 1, WMC for BANK is 3 (considering each
method complexity to be unity).

1) A.2 Coupling

It is the degree to which components depend on one
another. Classes (objects) are coupled three ways:
1. When a message is passed between objects, the
objects are said to be coupled.

Research Article [Agrawal, 1(3): May, 2012]
 ISSN: 2277-9655

http: // www.ijesrt.com (C) International Journal of Engineering Sciences & Research Technology[115-125]

2. Classes are coupled when methods declared in one
class use methods or attributes of the other classes.
3. Inheritance introduces significant tight coupling
between super classes and their subclasses.
Since good object-oriented design requires a balance
between coupling and inheritance, coupling measures
focus on non-inheritance coupling. The next object-
oriented metric measures coupling strength.

Metric 2: Coupling Between Object Classes
(CBO)
CBO is a count of the number of other classes to
which a class is coupled. It is measured by counting
the number of distinct non-inheritance related class

hierarchies on which a class depends. Excessive
coupling is detrimental to modular design and
prevents reuse. The more independent a class is, the
easier it is reuse in another application. The larger the
number of couples, the higher the sensitivity to
changes in other parts of the design and therefore
maintenance is more difficult. Strong coupling
complicates a system since a module is harder to
understand, change or correct by itself if it is
interrelated with other modules. Complexity can be
reduced by designing systems with the weakest
possible coupling between modules. This improves
modularity and promotes encapsulation. CBO
evaluates Efficiency and Reusability.

Figure-2: Class Diagram of Company

In Figure 2, Company class contains declarations of
instances of the classes Client and Department. The
Company class delegates its Client and Department
issues to instances of the Client and Department
classes. The value of metric CBO class Company is 2
and for class Client and Department is zero.

Metric 3: Coupling Factor
Coupling can be due to message passing (dynamic
coupling) or due to semantic
Association links (static coupling) among class
instances. It has been known that it is desirable that
classes communicate with as few other classes and
even when they communicate, they exchange as little
information as possible.
Couplings due to the use of the inheritance are not
included in CF, because a class is heavily coupled to
its ancestors via inheritance. If no classes are
coupled, CF = 0 % . If all classes are coupled with all
other classes, CF = 100 %.

B Inheritance
Another design abstraction in object-oriented systems
is the use of inheritance. Inheritance is a type of
relationship among classes that enables programmers
to reuse previously defined objects including
variables and operators. Inheritance decreases
complexity by reducing the number of operations and
operators, but this abstraction of objects can make
maintenance and design difficult. The two metrics
used to measure the amount of inheritance are the
depth and breadth of the inheritance hierarchy.

Metric 4: Depth of Inheritance Tree (DIT)
The depth of a class within the inheritance hierarchy
is the maximum length from the class node to the
root of the tree and is measured by the number of
ancestor classes. The deeper a class is within the
hierarchy, the greater the number methods it is likely
to inherit making it more complex to predict its
behavior. Deeper trees constitute greater design
complexity, since more methods and classes are
involved, but the greater the potential for reuse of

Research Article [Agrawal, 1(3): May, 2012]
 ISSN: 2277-9655

http: // www.ijesrt.com (C) International Journal of Engineering Sciences & Research Technology[115-125]

inherited methods. A support metric for DIT is the
number of methods inherited (NMI). This metric
primarily evaluates Efficiency and Reuse but also
relates to Understandability and Testability.

In Figure 3, DIT for Total Emp class is 2 as it has 2
Ancestor classes Domestic/International and
Company.
DIT for Domestic and International class is 1 as it has
one ancestor class Company.

Figure-3: Class Diagram of Company

Metric 5: Number of Children (NOC)
The number of children is the number of immediate
subclasses subordinate to a class in the hierarchy. It is
an indicator of the potential influence a class can
have on the design and on the system. The greater the
number of children, the greater the likelihood of
improper abstraction of the parent and may be a case
of misuse of sub classing. But the greater the number
of children, the greater the reusability since
inheritance is a form of reuse. If a class has a large
number of children, it may require more testing of the
methods of that class, thus increase the testing time.
NOC, therefore, primarily evaluates Efficiency,
Reusability, and Testability.
In figure-2 , NOC for Class Company is 2.

Metric 6: Method Inheritance Factor
Formula for calculation is written below:

��� = ���(��)

��(��)
��

���

Where, Ma(Ci) = Mi(Ci) + Md(Ci)
TC= total number of classes
Md(Ci) = the number of methods declared in a class
Mi(Ci) = the number of methods inherited in a class.
The MIF value is calculated from the project below
by the above formula. The value of the number of
methods inherited in Student is 0. Since, this is the

base class. The classes : InternalExam and
ExternalExam are inherited by the base class Student
in which there are two private attributes and two
protected attributes, and two operations as read() and
display() . Both the operations are inherited by the
derived classes. Hence, the number of methods
inherited by the derived class InternalExam and
ExternalExam is 2.Similarly, in the class Result; two
classes are inherited i.e. the InternalExam and
ExternalExam, so the inherited methods for this class
is 2. Therefore, the numerator value of the analyzed
project comes out to be 6. The denominator value can
be easily calculated by summation of the numerator
value along with the declared methods in each class.

Metric 7: Attribute Inheritance Factor

It is defined as follows:

��� = ��	 (��)
��(��)

��

���

where, Aa(Ci) = Ad (Ci)+ Ai (Ci)

TC= total number of classes
Ad (Ci) = number of attribute declared in a class
Ai (Ci) = number of attribute inherited in a class
AIF is 0 % for class which lacks inheritance. As the
MIF is calculated by calculating the number of
methods declared and inherited, in the same manner

Research Article [Agrawal, 1(3): May, 2012]
 ISSN: 2277-9655

http: // www.ijesrt.com (C) International Journal of Engineering Sciences & Research Technology[115-125]

AIF is calculated by calculating the attributes which
are inherited and declared. In our project shown in

Figure 4, gives the value of AIF as 6/13.

Figure 4 : Class diagram for student

Metric 8: Method Hiding Factor (MHF)
It is a measure of encapsulation defined as:
Where Md(Ci) is the number of methods declared in
a class, and

MHF = ∑ {∑ ���	(
��)�

(��)
}

��(��)

���
��
���

 ∑��

��� Ad(Ci)
Where Md(Ci) is the number of methods declared in
a class, and

 V (M mi) =∑ �� �����������,�� �

����

��
���

From the figure 5, we have calculated the method
hiding factor. But, there is no private visibilities of
the methods are inside the class. So, the values of V
(Mmi) of all the classes are 0. Hence, the MHF value
is 3/8.

Metric 9: Attribute Hiding Factor
The value of AHF is calculated by the formula
written as:

 ∑ {∑ ���	(� �)�

�
(��)
}

!�(��)

"��
��
���

AHF =

 ∑��
��� Ad(Ci)

Where A (C) d i is the number of methods declared
in a class, and

V (Aai)=∑ �� ��������#$�,�� �

����

��
���

 From the figure 5 we have calculated the AHF,
which is equal to 1/3.

Research Article [Agrawal, 1(3): May, 2012]
 ISSN: 2277-9655

http: // www.ijesrt.com (C) International Journal of Engineering Sciences & Research Technology[115-125]

Figure 5: Class diagram for person

Conclusion & Future Improvement
The main concern to present this paper is to improve
the quality of the software by providing systematic
approach that can expand the efficiency of the
software. The industries need to identify the overall
approach from analysis to post implementations. If
industries do not properly use the programming
standards, proper use of data types, proper algorithms
than those applications will become cumbersome and
the required more maintenance. In future if we want
to apply software re-engineering than we have so
many problems arises in between this. So, here, we
have suggested certain group of metrics which
evaluate the quality of the software on the basis of
software quality parameters. The product developed
with these low standards effect the quality, efficiency
of the product. Increase the complexity and ask for
more maintenance and testing. The use of such
metrics gives appropriate reimbursement in the
development of software.

References
1. Fenton NE and Ohlsson N, Quantitative
Analysis of Faults and Failures in a Complex
Software System, IEEE Transactions on Software
Engineering, to appear, 2000

2. S. R. Chidamber and C. F. Kemerer. A
metrics suite for object oriented design. IEEE Trans.
Software Eng., 20(6):476-493, 1994.
3. Jørgensen, M . A Review of Studies on
Expert Estimation of Software Development Effort.
2002.
4. Chidamber S. and Kemerer C.: “Towards a
Metrics Suite for Object Oriented Design”,
Conference on Object-Oriented Programming:
Systems, Languages and Applications (OOSPLA 91),
Published in SIGPLAN Notices, vol. 26, no. 11, pp.
197-211, 1991.
5. Chidamber S. and Kemerer C.: “A Metrics
Suite for Object Oriented Design”, IEEE
Transactions on Software Engineering, vol. 20, no. 6,
pp. 476-493, 1994.
6. Warmer J. and Kleppe A.: The Object
Constraint Language: Precise Modeling with UML,
Addison Wesley Publishing Company, 1999.
7. Briand L., Morasca S. and Basili V.:
“Property-Based Software Engineering
Measurement”, IEEE Transactions on Software
Engineering, vol. 22, no. 6, pp. 68-86, 1996.
8. Briand L., Devanbu W. and Melo W.: “An
investigation into couplingmeasures for C++”, 19th
International Conference on Software Engineering
(ICSE 97), Boston, USA, pp. 412-421, 1997.
9. Brito e Abreu F. and Carapuça R.: “Object-
Oriented Software Engineering: Measuring and

Research Article [Agrawal, 1(3): May, 2012]
 ISSN: 2277-9655

http: // www.ijesrt.com (C) International Journal of Engineering Sciences & Research Technology[115-125]

controlling the development process”, 4th
International Conference on Software Quality, Mc
Lean, VA, USA, 1994

10. Bansiya J. and Davis C.: “A Hierarchical
Model for Object-Oriented Design Quality
Assessment”, IEEE Transactions on Software
Engineering, vol. 28, no. 1, pp. 4-17, 2002.

